[1] Jain, S. K., Goel, M. K. and Agarwal, P. K. (1998). Reservoir operation studies of
Sabarmati system, India. Journal of water resources planning and
management, 124(1), 31-37.
[2] Jones, R. G., Noguer, M., Hassell, D. C., Hudson, D., Wilson, S. S., Jenkins, G. J. and
Mitchell, J. F. B. (2004). Generating high resolution climate change scenarios using
PRECIS. Met Office Hadley Centre, Exeter, UK, 40.
[3] Hormwichian, R., Kangrang, A. and Lamom, A. (2009). A conditional genetic
algorithm model for searching optimal reservoir rule curves. Journal of Applied
Sciences, 9(19), 3575-3580.
[4] Chang, F. J., Chen, L. and Chang, L. C. (2005). Optimizing the reservoir operating
rule curves by genetic algorithms. Hydrological Processes: An International
Journal, 19(11), 2277-2289.
[5] Kangrang, A. and Chaleeraktrakoon, C. (2007). Genetic algorithms connected
simulation with smoothing function for searching rule curves. American Journal
of Applied Sciences, 4(2), pp. 73-79.
[6] Prasanchum, H. and Kangrang, A. (2018). Optimal reservoir rule curves under
climatic and land use changes for Lampao Dam using Genetic Algorithm. KSCE
Journal of Civil Engineering, 22(1), 351-364.
[7] Afshar, M. H. (2013). Extension of the constrained particle swarm optimization
algorithm to optimal operation of multi-reservoirs system. International Journal
of Electrical Power & Energy Systems, 51, 71-81.
[8] Suribabu, C. R. (2006). Particle swarm optimization techniques for deriving
operation policies for maximum hydropower generation: A case study.
International Journal of Ecology and Development, 4, 66-85.
[9] Stedinger, J. R. (1984). The performance of LDR models for preliminary design
and reservoir operation. Water Resources Research, 20(2), 215-224.
[10] Kumar, D. N. and Baliarsingh, F. (2003). Folded dynamic programming for optimal
operation of multireservoir system. Water Resources Management, 17(5), 337-
353.
[11] Hormwichian, R., Kangrang, A., Lamom, A., Chaleeraktrakoon, C. and
Patamatamkul, S. (2013). Coupled-operations model and a conditional
differential evolution algorithm for improving reservoir management.
International Journal of Physical Sciences, 7(42), 5701-5710.
[12] Kangrang, A. and Lokham, C. (2013). Optimal Reservoir Rule Curves Considering
Conditional Ant Colony Optimization with. Journal of applied sciences, 13(1),
154-160.
[13] Afshar, A., Massoumi, F., Afshar, A. and Mariño, M. A. (2015). State of the art review
of ant colony optimization applications in water resource management. Water
Resources Management, 29(11), 3891-3904.
[14] Yang, X. S. and Deb, S. (2009). Cuckoo search via Lévy flights. In Proceedings of
2009 World congress on nature & biologically inspired computing (NaBIC),
pp. 210-214. Coimbatore, India: IEEE.
[15] Ming, B., Chang, J. X., Huang, Q., Wang, Y. M. and Huang, S. Z. (2015). Optimal
operation of multi-reservoir system based-on cuckoo search algorithm. Water
Resources Management, 29(15), 5671-5687.
[16] Saimuang, K. and Kangrang, A. (2016). Optimal Water Allocation Criteria using the
Tabu Search Technique. J Sci Technol MSU. 36(1), 1-9.
[17] Kangrang, A., Prasanchum, H. and Hormwichian, R. (2018). Development of future
rule curves for multipurpose reservoir operation using conditional genetic and
tabu search algorithms. Advances in Civil Engineering, 2018, 1 – 10.
[18] Bhumiphan, N. (2021). Improvement of Optimal Reservoir Operation Rule Curve
by Tabu Search: A Case Study of Huai Luang. The Journal of KMUTNB., 31(3),
461-470.
[19] Bayraktar, Z., Komurcu, M. and Werner, D. H. (2010). Wind Driven Optimization
(WDO): A novel nature-inspired optimization algorithm and its application to
electromagnetics. In Proceedings of 2010 IEEE antennas and propagation
society international symposium, pp. 1-4. Toronto, ON, Canada: IEEE.
[20] Bayraktar, Z., Komurcu, M., Bossard, J. A. and Werner, D. H. (2013). The wind
driven optimization technique and its application in electromagnetics. IEEE
transactions on antennas and propagation, 61(5), 2745-2757.
[21] Rodriguez, L. B., Cello, P. A., Vionnet, C. A. and Goodrich, D. (2008). Fully
conservative coupling of HEC-RAS with MODFLOW to simulate stream–aquifer
interactions in a drainage basin. Journal of Hydrology, 353(1-2), 129-142.